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Nature of roll to spiral-defect-chaos transition
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We investigate the nature of the parallel-roll–to–spiral-defect-chaos~SDC! transition in Rayleigh-Be´nard
convection, based on the generalized Swift-Hohenberg model. We carry out extensive, systematic numerical
studies by, on one branch, increasing the control parameter gradually from the parallel-roll regime to the SDC
regime and, on the other branch, decreasing it in the opposite manner. We find that the data of several
time-averagedglobal quantities all form hysteretic loops from the two branches. We also discuss several
possible scenarios for the transition and analyze our data for SDC accordingly. We conclude that the roll-to-
SDC transition is first order in character and that the correlation length diverges at the conduction to convection
onset. We further postulate that this transition can be understood somewhat similarly to the hexagon-to-roll
transition in non-Boussinesq fluids. Finally, we comment on the differences between our conclusion and those
in two experiments.@S1063-651X~98!08502-X#

PACS number~s!: 47.54.1r, 47.20.Lz, 47.20.Bp, 47.27.Te
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I. INTRODUCTION

Many nonequilibrium systems exhibit self-organiz
pattern-forming phenomena@1#. In the past few years, a dif
ferent type of intrinsic pattern has emerged in many dis
plines of science. These patterns are characterized by
extensive, irregular behavior in both space and time, wh
are known as spatiotemporal chaos~STC! @1#. STC typically
exists in large size systems and its complexity increases
matically with the system size@2#. Owing to its generic dy-
namical complexity, STC hence poses a great challeng
both experimentalists and theoreticians.

From the very beginning, Rayleigh-Be´nard convection
~RBC! has been a paradigm in the study of pattern format
in driven dissipative systems because of its relative simp
ity and high precision in controlled experiments@3#. RBC
can occur when a thin horizontal layer of fluid is heated fro
below. The system is described by three dimensionless
rameters@1#: ~a! the Rayleigh numberR[gad3DT/kn, in
which g is the gravitational acceleration,d the layer thick-
ness,DT the temperature gradient across the layer,a the
thermal expansion coefficient,k the thermal diffusivity, and
n the kinematic viscosity;~b! the Prandtl numbers[n/k;
and ~c! the aspect ratioG[L/2d, whereL is the horizontal
size of the system. The Rayleigh numberR is the control
parameter of the system; the Prandtl numbers specifies the
fluid properties. It is convenient to introduce a reduced c
trol parametere[(R2Rc)/Rc , whereRc is the critical value
of R at which the fluid bifurcates from a static conducti
state to a convective state.

RBC has been studied extensively in the literature@1,3#.
Theoretical analyses by Busse and his coauthors@4# predict
that parallel roll states are stable inside a stability domain
(R,k,s) space withk the wave number, which is known a
the ‘‘Busse balloon.’’ Surprisingly, recent experiments@5,6#
and numerical studies@7–9#, using systems withs;O(1)
and largeG, revealed that the parallel roll state yields to
spatiotemporally chaotic state even for states inside
Busse balloon. This spatiotemporally chaotic state, ca
571063-651X/98/57~2!/1705~12!/$15.00
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spiral-defect-chaos~SDC!, exhibits very complicated dy-
namics, illustrated by the interplay of numerous rotating s
rals, patches of moving rolls, intricate grain boundaries, d
locations, and other defects@5,6#. Its discovery has since
stimulated many experimental@5,6,10–12#, theoretical
@13,14#, and numerical@7–9,15# efforts to understand it.

The nature of the parallel roll to SDC transition is one
the important questions with respect to SDC and has b
investigated in several experimental and numerical stud
@11,12,15#. By solving the generalized Swift-Hohenber
~GSH! model of RBC @16–18# for non-Boussinesq fluids
with randominitial conditions, two of us@15# characterized
the transition by the behavior of time-averaged global qu
tities such as convective currentJ, vorticity currentV ~called
vortex energy in Ref.@15#!, and spectra entropyJ @19#. It
was found that the convective current seems to be smo
across the transition temperatureeT , but both the vorticity
current and the spectra entropy seem to obey power-law
havior neareT . However, this study was unable to distin
guish between a gradual or sharp transition. Despite its
conclusiveness on the nature of the roll-to-SDC transiti
this study suggests that studying such time-averaged gl
quantities is quite useful. It hence motivated us to develo
phenomenological theory for STC, including SDC, in RB
@14#. In the theory, we made a random-phase approxima
for the spatiotemporally chaotic states and assumed that
time-averaged structure factorS(k) satisfies a scaling form
with respect to the two-point correlation lengthj2. With
these assumptions, we obtained analytical expressions
both J andV in terms of measurable quantities. These th
oretical results provide us some insights on the nature
SDC. In addition, a recent experimental study@12# also
found spectra entropyJ to be a useful quantity.

On the experimental side, Morriset al. @11# studied the
structure of SDC using acircular cell. They found that the
correlation lengthj2 is smooth acrosseT and diverges ate
50 with a mean-field exponent. However, the data for
correlation timet was consistent with either a divergence
eT with a mean-field exponent or a divergence ate50 with
1705 © 1998 The American Physical Society
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a non-mean-field exponent. However, Cakmuret al. @12# re-
cently used asquarecell in their experiment and found tha
j2 diverges ateT with a small exponent. In critical phenom
ena, we know that finite~infinite! j2 and t are normally
associated with first-order~second-order! transitions. If this
is also true in nonequilibrium phenomena, then these
experiments should lead to different conclusions about
nature of the roll-to-SDC transition ateT . We will comment
further about these two experiments in Sec. V.

In this paper we present our extensive, systematic num
cal studies of SDC, based on the GSH model of RBC
Boussinesq fluids. In comparison with studies in Ref.@15#,
we use random initial conditions ate50.05 ande50.8 only.
Then, after completing the calculation at onee, we increase
e ~originally from e50.05) or decreasee ~originally from
e50.8) gradually and take the final state from the previoue
as our initial condition. We hence obtain two differe
branches of data, one from increasinge and the other from
decreasinge. We find that the results forj2, J, V, andJ all
form hysteretic loops from the two branches during the ro
to-SDC transition. We analyze our data in accordance w
our theoretical results@14#. We conclude that the roll-to-SDC
transition is first order in character. We also postulate t
this transition can be understood somewhat similarly to
hexagon-to-roll transition in non-Boussinesq fluids@20#;
namely, we postulate that the SDC bifurcation actually
curs ate50. However, since SDC is unstable~or metastable!
against parallel roll states at smallere, it emerges only for
e.eT .

This paper is organized as follows. In Sec. II we introdu
the GSH model of RBC and define some important tim
averaged global quantities. We then summarize our theo
ical results in Ref.@14#. In Sec. III we discuss possible sc
narios with regard to SDC, according to whether t
correlation lengthj2 diverges ate50 or ateT . We also note
that one might expectt to have a power-law behavior, sim
lar to that ofj2, and speculate that a scaling relation exi
between the exponents ofj2 andt. Furthermore, we specu
late that the structure factorS(k,v), defined in Ref.@11#,
satisfies a scaling formS(k,v)5j2F„(k2kmax)j2 ,vt…,
which is more general than that of the time-averagedS(k).
We present the details of our numerical studies in Sec.
We also analyze the data forj2, J, V, andJ to test these
different scenarios. In Sec. V we discuss the subtleties
volved in determining the nature of the roll-to-SDC tran
tion and comment on the different conclusions between
work and the earlier experimental studies@11,12#.

II. THEORETICAL RESULTS

The GSH model of RBC@16–18# is widely accepted for
theoretical study. This model is derived from the thre
dimensional hydrodynamic equations, but is much simple
study both numerically and analytically. The GSH mod
contains two coupled equations in two-dimensional spacr
5(x,y), one for the order parameterc(r ,t) and the other for
the mean-flow fieldz(r ,t). The convective patterns in RBC
are completely determined by the order parameterc(r ,t).
The amplitude equations for the GSH model and the hyd
dynamical equations are the same in the leading order
onset. Numerical solutions of this model or its modified v
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sions have not only reproduced most patterns observe
experiments but also resembled experimental results r
tively well @1,7,8,13,15,21#. However, there are some shor
comings in the model@9,22#: The stability boundary of the
model does not coincide with that of hydrodynamics; it i
duces an unphysical, short-ranged cross roll instability; a
both the shape and the peak position of the power spect
for SDC are different from those in the real system. Even
owing to its simplicity and its qualitative resemblance to re
systems, this model is very valuable in studying RBC.

In the GSH model, the order parameterc(r ,t) satisfies
@16–18#

] tc1gmU•“c5@e2~¹211!2#c2c3, ~1!

where“ is the gradient operator in two dimensions andU(r )
is the mean-flow velocity given byU(r )5“z(r ,t)3ez . The
mean-flow fieldz(r ,t), on the other hand, satisfies@18#

@] t2s~¹22c2!#¹2z5ez•@“~¹2c!3“c#. ~2!

Variables in these equations have been rescaled for num
cal convenience. Their relations to their physical values
be found in Ref.@14#. @See Eqs.~1!–~3! and ~58!–~60!
therein.# For example, the reduced Rayleigh numbere in Eq.
~1! is related to its physical valueeexpt by eexpt50.3594e.
The rescaling factors forc, z, t, and r and parametersgm ,
s, andc2 can also be found in Ref.@14#.

We now define several important time-averagedglobal
quantities in RBC. The first one is the time-averaged conv
tive current defined as

J[A21E dr c2~r ,t !5(
k

ĉ* ~k,t !ĉ~k,t !, ~3!

where ĉ(k,t) is the Fourier component ofc(r ,t), A is the
area of the system, andF(t) represents the time average
F(t). This quantity increases fromJ50 to J.0 at the
conduction-to-convection onset and hence characterizes
transition. The second one is the time-averaged vorticity c
rent defined as

V[A21E dr vz
2~r ,t !, ~4!

wherevz(r ,t)52¹2z(r ,t). This quantity reflects the distor
tion of patterns at large distance. It is identically zero f
perfect parallel rolls and increases dramatically for SD
@15#. Because of this, it has been speculated that one
take V as one of the order parameters to characterize
roll-to-SDC transition @15#. The third one is the time-
averaged spectra entropy defined as@19#

J[2(
k

S~k,t !lnS~k,t !, ~5!

where the structure factorS(k,t) is given by

S~k,t !5ĉ* ~k,t !ĉ~k,t !/J. ~6!

Like its counterpart in thermodynamics, the spectra entro
J is related to the randomness of all excited states. Its va
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57 1707NATURE OF ROLL TO SPIRAL-DEFECT-CHAOS TRANSITION
is ln250.6931 for perfect parallel roll states, but increas
dramatically for SDC. This quantity was also found useful
characterize the roll-to-SDC transition@12,15#. Another im-
portant quantity is the two-point correlation length defined

j25@^k2&k2^k&k
2#21/2, ~7!

where we have used the notation^F(k)&k5(kF(k)S(k) in
which S(k) is the time-averaged structure factor. It w
found thatS(k) is azimuthally uniform for SDC@5,15#. So
one may define an azimuthally averaged structure fa
S(k), normalized by*0

`dk kS(k)51, and its corresponding
averagê F(k)&k5*0

`dk kS(k)F(k).
In Ref. @14# we presented our analytical calculations, u

ing the GSH model, ofJ and V for STC in RBC. These
calculations are valid for both SDC and phase turbule
~PT! @23,24#. By assuming that the time-averaged two-po
correlation function

C~r1 ,r2![c~r1 ,t !c~r2 ,t !/c2~r1 ,t ! ~8!

is translation invariant in STC, i.e.,C(r1 ,r2)5C(r12r2),
we found that the phases of twoĉ(k,t) fields are uncorre-
lated in time unless they have the same wave numbek.
Furthermore, we applied arandom-phase approximatio
~RPA! to STC in which four-point correlation functions ar
approximated by products of two-point correlation functio
such ascccc̄;cc̄ cc̄. Using this RPA, we derivedJ andV
in terms ofS(k). We further assumed that the structure fa
tor satisfies ascaling form with respect toj2, i.e.,

kS~k!5j2F„~k2kmax!j2…, ~9!

wherekmax is the peak position ofkS(k) andF(x) is the
scaling function satisfying*2`

` dx F(x)51. @Sincek>0 in
kS(k), the lower limit forF(x) is 2kmaxj2, which we ap-
proximate by2`.# From these assumptions, we obtain
explicit formulas for bothJ and V in the leading order of
j2

21. For SDC, these results can be written as@14#

JSDC
SH '

2

3F e2
4^x2&x

j2
2 G ~10!

and

VSDC
SH '

1

2s2F 21c2

A4c21c4
21G ~JSDC

SH !2

j2
2

, ~11!

where we have used the notation ^F(x)&x

5*2`
` dx F(x)F(x). Inserting k5kmax1xj2

21 and Eq. ~9!
into Eq. ~7!, it is easy to see that̂x2&x511^x&x

2>1 and
^k&k5kmax1j2

21^x&x .
In comparison, the convective current for perfect para

rolls with wave numberk0 has been evaluated to beJroll
SH

5 2
3 @e2(12k0

2)2# @17#. To our knowledge, there is no ex
plicit formula for Jroll

SH for distorted rolls. If one uses thi
expression forJroll

SH but replaces (12k0
2)2 with ^(12k2)2&k

to account for the finite width of the power spectrum, o
finds for distorted roll states that
s

s

or

-

e
t

-

l

Jroll
SH 5

2

3F e2
4^x2&x

j2
2 G , ~12!

wherej2 and^x2&x have exactly the same meanings as in E
~10!, but their values may be different.

Notice that the formulas forJSDC
SH andJroll

SH are the same.
This, however, is due to the simplification that the coupli
constant of the nonlinear termc3 is taken as a constant i
Eq. ~1!. In a more realistic description of hydrodynamic
this coupling constant, sayg(cosa), is angle dependent an
has been evaluated in Ref.@17# @before the rescalings leadin
to Eq. ~1!#. For such a coupling constant, the time-averag
convective current for SDC, before the rescalings, has b
calculated in Ref.@14# as

JSDC'
2

gSDC
F e2

^x2&xj0
2

j2
2 G , ~13!

where j0
2.0.148 @17# and gSDC51.131910.0483s21

10.0710s22 @14#. Correspondingly, the convective curre
for parallel rolls is

Jroll 5
1

groll
F e2

^x2&xj0
2

j2
2 G , ~14!

with groll 50.699520.0047s2110.0083s22 @17#. From
these expressions, one finds that

DJ[JSDC2Jroll 5F 2

gSDC
2

1

groll
Ge2

2j0
2

gSDC
F ^x2&x

j2
2 G

SDC

1
j0

2

groll
F ^x2&x

j2
2 G

roll

. ~15!

Since 2/gSDC is not equal to 1/groll for most values ofs, the
first term above is not zero. It is highly unlikely that this ter
may be canceled by the contributions from the two oth
terms. Thus there exist discontinuities in the value and
slope ofJ during the roll-to-SDC transition. This is not su
prising considering thatJ depends sensitively on the stru
ture of the convective pattern@17# and that the structures o
parallel rolls and SDC are so different. Assumin
@^x2&x /j2

2#SDC5@^x2&x /j2
2# roll at the transition temperature

we find thatDJ/Jroll 50.1239 fors51. So the value and the
slope ofJ jump about 10% during the roll-to-SDC transition
Similar jumps can be found for other values ofs under the
same assumption; see Fig. 1.

III. POSSIBLE SCENARIOS

From Eqs.~10! and~11!, it is obvious that the behavior o
JSDC andVSDC depend sensitively on the two-point correl
tion length j2. For simplicity, we drop the superscripts i
Eqs.~10!–~12!. We assume thatj2 has a power-law behavio
such as

j2'j2,0ẽ
2n, ~16!
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where ẽ is the basic scaling field for SDC. Similar behavi
has been found forj2 in PT @14#. In that case, since th
transition to PT occurs ate50 @23,24#, one has simplyẽ
5e @14#. The possible scenario for SDC, however, is mo
subtle since the roll-to-SDC transition occurs at a posit
temperatureeT @5–7#. One obviously has two alternativ
choices for the scaling fieldẽ in Eq. ~16!: ~A! ẽ 5e or ~B!

ẽ 5e2eT . Case ~A! is similar to the situation in the
hexagon-to-roll transition@20# where the two-point correla
tion length j2 is finite at the transition temperatureeT but
diverges ate50. This scenario is consistent with the expe
mental result by Morriset al. @11#. Case~B! resembles the
situation in critical phenomena in whichj2 diverges ateT .
This scenario was suggested by Cakmuret al. @12#. We now
discuss these two scenarios separately.

~A! ẽ 5e. This implies that all properties of SDC ar
controlled ate50 rather than ate5eT . As far as scaling
relations are concerned, this case is similar to the situatio
PT @14#. Similar to those in PT, one may hence define pow
laws such as

JSDC'J0em, VSDC'V0el. ~17!

One finds from Eqs.~11! and ~16! the scaling relation

l52m12n. ~18!

In comparison, one hasl52m1n in PT @14#. From Eq.
~10!, sinceJSDC is positive by definition, the values of th
exponents satisfy

m51, n>1/2, l5212n>3. ~19!

Now it is useful to further distinguish two different case
~A1! n51/2 and~A2! n.1/2. Case~A1! corresponds to a
mean-field exponentn, in which one has that

J05
2

3F12
4^x2&x

j2,0
2 G ~20!

and

FIG. 1. DJ/Jroll vs Prandtl numbers, where DJ5JSDC

2Jroll .
e
e

in
r

V05
1

2s2F 21c2

A4c21c4
21G J0

2

j2,0
2

. ~21!

The amplitudesJ0 andV0 depend on two phenomenologic
parametersj2,0 and^x2&x . In case~A2!, the exponentn has
a non-mean-field value. Now, since 2n.1, the j2

22;e2n

term in Eq.~10! only adds a correction to the leading sing
larity. Instead of Eq.~17!, one may define

JSDC5J0em@11 j 1em11•••# ~22!

and

VSDC5V0el@11v1el11•••#, ~23!

with m152n2m.0 and l1.0. Consequently, instead o
Eq. ~20!, one has that

J052/3, j 1524^x2&x /j2,0
2 . ~24!

While V0 is still given by Eq.~21!, one must use the corre
sponding new value ofJ0. The values ofv1 and l1, how-
ever, cannot be determined without knowing the behavio
j2 beyond the leading term described in Eq.~16!.

~B! ẽ 5e2eT . As we mentioned, this case resembles
situation in critical phenomena in whichj2 diverges ateT .
Then, as in critical phenomena, other quantities should a
have singular behaviors ateT . Now, instead of Eq.~17! or
Eqs.~22! and ~23!, we define, nearẽ 501, that

JSDC'J0e2Js,0ẽ m, VSDC'Vs,0ẽ l. ~25!

The behavior ofJSDC is apparently dominated by the smoo
background termJ0e neareT . As a consequence, theJSDC

2

factor in Eq. ~11! no longer contributes to the value ofl.
From Eqs.~10!, ~11! and ~16!, one gets that

m5l52n ~26!

instead of Eq.~19!. As for the amplitudes, one finds that

J05
2

3
, Js,05

8^x2&x

3j2,0
2

, ~27!

and

Vs,05
1

2s2F 21c2

A4c21c4
21GJ0

2eT
2

j2,0
2

, ~28!

where we have usede'eT near ẽ 501. If 2n is not an
integer, then the best way to evaluate the exponentsm andn
is, in principle, to differentiateJSDC andVSDC with respect
to e and to analyze the corresponding divergences after
tain orders of differentiation. The scaling relationsm5l

52n hence provide a very strong test for theẽ 5e2eT as-
sumption. Ifm52n,1, then the slope ofJSDC is negative in
the range of 0, ẽ , ẽ 3 with ẽ 35@mJs,0 /J0#1/(12m). The
observation of a negative slope ofJSDC neareT will appar-
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57 1709NATURE OF ROLL TO SPIRAL-DEFECT-CHAOS TRANSITION
ently increase the validity of scenario~B!. However, if the
value of ẽ 3 is very small, such an observation may not
practical at present.

In critical dynamics, the correlation time as well as t
correlation length exhibit similar power-law behavior
which one would expect is also true for SDC. If so, then
correlation timet, whose definition for SDC is given in Re
@11#, behaves like

t't0 ẽ 2z, ~29!

in comparison with Eq.~16! for j2. The amplitude equation
for parallel roll states predicts thatz52n51. Although the
values ofz and n may be different for SDC, we specula
that the scaling relationz52n may still hold for SDC. Ap-
parently, the different possible scenarios~A1!, ~A2!, and~B!
for j2 are equally valid fort. Finally, we remark that one
might also expect a scaling behavior of the structure fac
S(k,v), defined for example in Ref.@11#, such as

kS~k,v!5j2F„~k2kmax!j2 ,vt…]. ~30!

This scaling behavior, if valid, implies Eq.~9! for the time-
averaged structure factorS(k) and hence is more genera
We will explore this possibility elsewhere.

IV. NUMERICAL SOLUTIONS AND DATA ANALYSES

We now present our numerical studies of SDC with t
GSH equations. The numerical method for solving the G
equations is based on the work by Bjo”rstadet al. @25#. Fol-
lowing Ref.@7#, we choosegm550, s51.0, andc252.0 for
parameters in Eqs.~1! and ~2!. In our simulation, we take a
square cell of sizeLx5Ly5128p, which corresponds to an
aspect ratioG564. Uniform square grids with spacingDx
5Dy5p/4.0 have been used, so the total number of no
is 5123512. We use the rigid boundary conditionscuB
5n•“cuB5zuB5n•“zuB50 in the simulation. Heren is
the unit vector normal to the boundary, sayB, of the domain
of integration. We take two different routes to systematica
study the transitions between parallel roll states and S
states.~A! We increase the control parametere from e
50.05 toe50.6 with steps ofDe50.05. We call this the roll
branch.~B! We decreasee from e50.8 to e50.4. We call
this the SDC branch. Fore50.05 or 0.8, we choose initia
conditions z(r ,t50) and c(r ,t50) as random variables
obeying a Gaussian distribution with a zero mean and a v
ance of 0.001. For other subsequente ’s, we take the final
results from the previouse as our initial conditions. For eac
e, we wait about four horizontal diffusion timeth before
collecting data that we hope is sufficient to pass the trans
regime. We run for an additional 20.8th to collect 20 instan-
taneous profiles for SDC states or 16th to collect 10 profiles
for parallel roll states during each data collection.

The patterns we observed are very similar to those fo
in real experiments@5,6#, which can be summarized as fo
lows. ~A! Within the roll branch, straight parallel rolls ar
observed ate50.05 up to 0.4 with a few defects at th
boundary. Starting ate50.45 up to 0.6, the rolls start to ben
and focal singularities start to appear near the boundary
weak time dependence sets in ate50.45 in which the nucle-
e

r
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y
C
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d
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ation of defects along the sidewall occurs. Two typic
shadow graph images, one for the order parameterc(r ,t)
and another for the vertical vorticityvz(r ,t)52¹2z(r ,t), of
the roll state ate50.2 are shown in Fig. 2.~B! Within the
SDC branch, SDC states are observed ate50.820.55,
whose behavior has been described in detail before@5,6,15#.
At e50.5, only a few spirals still exist that mix with a back
ground of locally curved rolls. Finally, ate50.4, the pattern
looks much like a roll state with a few defects and disloc
tions. In Fig. 2 we plot two typical shadow graph image
again one forc(r ,t) and another forvz(r ,t), of SDC ate
50.65. While the vertical vorticityvz(r ) in a roll state is
almost zero everywhere, the corresponding field has a m
richer structure in SDC. This suggests choosingvz(r ,t) to be
an order parameter in distinguishing a roll state from a S
state@15#. It is interesting to point out that patterns in th
interval e50.420.6 depend on their earlier histories, i.e
whether they are on the roll branch or the SDC branch;
Fig. 3. So a hysteretic loop exists when one follows the t
different routes. This is consistent with experimental obs
vations that different patterns evolve from different initi
conditions at the samee @12#. Owing to the existence o
hysteresis, the transition temperatureeT between parallel roll
states and SDC states cannot be determined precisely in
study. Our rough estimate iseT.0.45.

In order to determine the character of the transition
tween rolls and SDC, we have calculated, from our num
cal studies, the structure factorS(k), the two-point correla-
tion lengthj2, the convective currentJ, the vorticity current
V, and the spectra entropyJ for both roll states and SDC
states. The numerical methods used in calculating th

FIG. 2. Instantaneous patterns ofc(r ,t) and vz(r ,t). Dark re-
gions correspond toc(r ,t).0 or vz(r ,t).0 and white regions to
c(r ,t),0 or vz(r ,t),0. ~a! c(r ,t) and~b! v(r ,t) at e50.2 on the
roll branch; ~c! c(r ,t) and ~d! v(r ,t) at e50.65 on the SDC
branch.
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quantities are the same as in Ref.@15#. The numerical uncer-
tainties are taken as the variances of our data. Conside
that we can, at most, take just a few samples of the stron
fluctuating instantaneous quantities, presumably obey
Gaussian distributions near their corresponding tim
averaged values, we believe that the probabilities, and he
the uncertainties, for us to obtain the truly time-averag
values are determined by those variances. From the dat
S(k) of the SDC states, we have verified the existence of
scaling form~9! within our numerical uncertainties for SDC
@14#. The results forj2, J, V, andJ are plotted in Figs. 4–7
The most striking feature in these figures is the hyster
loops formed by the two branches. It is also noticeable t
the uncertainties on the SDC branch are generally larger
those on the roll branch, which presumably is due to
chaotic character of SDC.

We fit the data on the roll branch with power-law beha
iors. To allow for the possibility that roll states might b
unstable or metastable fore.0.45, only data for 0.05<e
<0.45 are used in actual fittings.~i! We first use the nonlin-
ear x2 method to fit the convective current withJ5J0(e
2ec)

m and find that J050.655460.0002, m51.0054
60.0004, andec50.002. The actual accuracy in our resu
may not be as good as indicated. The fitting error forec is
very small. Thisec is the measured onset from conduction
convection, whose positive value is most likely due to fini
size effects@26#. ApparentlyJ on the roll branch has a mean
field exponent. The amplitudeJ0 is also in good agreemen
with Eq. ~12! provided that̂ x2&x>1 is not too big.~ii ! Using
thex2 method, we fit the data for the correlation length w
j25j2,0(e2ec)

2n, which leads toj2,0513.060.2 and n
50.5460.01. Soj2 on the roll branch also has a mean-fie
exponent.~iii ! Using thex2 method, we fit the data for the
vorticity current with V5V0(e2ec)

l and find that V0
5(1.95260.008)31029 and l52.46160.003. Again, the
actual accuracy in our results may not be as good as i
cated. This behavior ofV is not easy to understand. Th
amplitude equations coupled with mean-flow predict,
rigid-rigid boundaries, thatV;e7/2 for almost perfect paral-
lel rolls andV;e3 for general patterns@18#. None of these
can explain the behavior ofV we found, which seems to b
consistent withV;e5/2. ~iv! The analysis of the spectra en
tropy is most difficult since there is no theory whatsoever
describe its behavior. We simply fit it to a formJ5Jb

FIG. 3. Instantaneous patterns ofc(r ,t) at e50.55: ~a! on the
roll branch and~b! on the SDC branch. Dark regions correspond
c(r ,t).0 and white regions toc(r ,t),0.
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1J0(e2ec)
d for the roll states. We find from the nonlinea

x2 method that Jb54.2460.04, J052.560.1, and d
51.0060.08. The background termJb is much larger than
the corresponding value for perfect parallel rollsJb5 ln2
50.6931. This presumably is due to finite-size effects and
limited computing time. The original data and their corr
sponding fitting curves for these global quantities are plot
in Figs. 4–7.

The analyses of the data on the SDC branch must
treated with caution given that there are three possible s
ing scenarios as discussed in Sec. III. We first fit the data
j2 and V to power laws such as~i! j25j2,0(e2e0)2n and
~ii ! V5V0(e2e0)l, wheree05ec ~the onset temperature i
a finite system! in scenario~A! or e05eT ~the roll-to-SDC
transition temperature! in scenario~B!. Then we fit the data
of J in accordance with our theoretical result in Eq.~10!, i.e.,
~iii ! J5J0(e2ec)2Jjj2

22, where we take the correspondin
fitting results forj2 in ~i!. Clearly the value ofe0 is essential
to determine which of the three scenarios is valid. In t
following, we apply three different fittings for three values
e0 and check the consistency of our numerical data aga
the theoretical results in Eqs.~10! and ~11!.

~a! To check whether scenario~A!, i.e., ẽ 5e, is valid, we
fix e05ec50.002, whose value is given by the fitting ofJ on
the roll branch. Since it is probable that SDC states are
stable or metastable ate50.4 and 0.45, the correspondin
data might deviate from their ‘‘real’’ values in order to form
the hysteretic loops. For this reason, we disregard these
points and use only those data within 0.5<e<0.8 for fitting.
We use thex2 method to fit our data, which leads to~i! j0

56.860.2 and n50.7260.05, ~ii ! V05(3.060.2)31028

andl53.060.1, and~iii ! J050.6460.02 andJj52.960.9.
The original data ofj2, J, and V and their corresponding
fitting curves are plotted in Fig. 4. Apparently those curv
fit the original data well. So scenario~A! is consistent with
our numerical data. To further distinguish scenario~A1! (n
5 1

2 ) or ~A2! (n. 1
2 ), we find that, on the one hand,n

50.7260.05 from the direct fitting in~i! but, on the other
hand, n50.5060.05 from l53.060.1 in ~ii ! and
l5212n in Eq. ~19!. This discrepancy is likely caused b
the big numerical uncertainties in our data. We feel that
direct fitting is more reliable and scenario~A2! is more likely
to be true. However, we cannot definitely rule out scena
~A1!. More accurate data are needed to resolve this issu

~b! We check whether scenario~B!, i.e., ẽ 5e2eT , is
consistent with our numerical data, where the value ofeT is
determined by the fitting ofj2. In contrast to case~a!, there
is no obvious reason to disregard any point in this scena
So all the data within 0.4<e<0.8 are used in our fittings
We first use the nonlinearx2 method to fit the data ofj2,
which gives ~i! j055.960.2, n50.4660.06, ande05eT
50.2760.03. Then we fixe050.27 and use thex2 method
to fit the data ofV and J. We find that ~ii ! V05(8.1
60.2)31028 and l52.3360.01 and ~iii ! J050.675
60.001 andJj54.960.1. These results are very sensitive
the points ate50.4 and 0.45. The original data ofj2, J, and
V and their corresponding fitting curves are plotted in Fig.
The fitting of V obviously is not good. The resultsn50.46
60.06 in ~i! and l52.3360.01 in ~ii ! do not satisfy the



n
lel

57 1711NATURE OF ROLL TO SPIRAL-DEFECT-CHAOS TRANSITION
FIG. 4. Plots ofj2
22, J, andV vs e for both parallel rolls and SDC. The corresponding fitting curves for SDC are described in~a! in Sec.

IV. The following labels are used: SDC, the numerical data with error bars on the SDC branch;~a!, the fitting curves for SDC described i
~a! in the text; Roll, the numerical data with error bars on the roll branch;~p!, the fitting curves for parallel rolls. To indicate that the paral
roll states fore.eT and the SDC states fore,eT may be metastable, the corresponding fitting curves for~a! and~p! are plotted with dotted
lines. The transition temperature is estimated roughly ateT50.45.
s

l

scaling relationl52n in Eq. ~26!. So scenario~B! with eT
50.27 is unlikely to be true.

~c! We check whether scenario~B!, with eT determined
by the fitting ofV, is consistent with our numerical data. A
in case~b!, we use all the data within 0.4<e<0.8 in our
fittings. We first use the nonlinearx2 method to fit the data
of V and find that ~ii ! V05(4.560.3)31028, l51.41
60.07, andeT50.34860.005. Then we fixe050.348 and
apply thex2 method to fit the data ofj2 andJ. We find that
~i! j2,056.5560.09 and n50.29560.008, and ~iii ! J0
50.66760.001 andJj54.660.1. Again, these fitting results
are very sensitive to the points ate50.4 and 0.45. The origi-
nal data ofj2, J, and V and their corresponding fitting
curves are plotted in Fig. 6. Notice that sincen in ~i! is less
than 1

2, the slope ofJ is negative in the range of 0, ẽ 5e

2eT, ẽ 3 with ẽ 35@2nJj /j2,0
2 J0#1/(122n). In the present

case, one hasẽ 353.2031023, which perhaps is too smal
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FIG. 5. Plots ofj2
22, J, andV vs e for both parallel rolls and SDC. The corresponding fitting curves for SDC are described in~b! in Sec.

IV. The following labels are used: SDC, the numerical data with error bars on the SDC branch;~b!, the fitting curves for SDC described i
~b! in the text; Roll, the numerical data with error bars on the roll branch;~p!, the fitting curves for parallel rolls.
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to be checked by real experiments or simulations. From
pure-data-fitting point of view, the fittings in this case are
good as the fittings in case~a!. So, without the benefit of ou
theoretical results, scenario~B! with eT50.348 could be~in-
correctly! accepted. However, the exponentsn50.295
60.008 in~i! andl51.4160.07 in~ii ! are not even close to
satisfying the scaling relationl52n in Eq. ~26!. So this
scenario can be ruled out by our theory. From this, toge
with the discussions in cases~a! and ~b!, we conclude that
scenario~B! is unlikely to be valid for SDC and scenario~A!
is consistent with our numerical data and our theory.
e
s

er

It is worthwhile to mention that, in all cases above, t
value ofJ0 agrees with the theoretical result 2/3 in Eq.~10!;
the value ofJj is also consistent with the theoretical predi
tion Jj>8/3. On the other hand, the theoretical results
Eqs. ~21! and ~28! predict thatV057.431024 in case~a!,
V057.231025 in case~b!, andV059.731025 in case~c!.
All these predictions are several orders larger than the
responding numerical results. The reason for such big
crepancies is not clear to us.

We have also studied the behavior of the spectra entro
Owing to the lack of any theory, we simply fit the data ofJ
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FIG. 6. Plots ofj2
22, J, andV vs e for both parallel rolls and SDC. The corresponding fitting curves for SDC are described in~c! in Sec.

IV. The following labels are used: SDC, the numerical data with error bars on the SDC branch;~c!, the fitting curves for SDC described i
~c! in the text; Roll, the numerical data with error bars on the roll branch;~p!, the fitting curves for parallel rolls.
gs
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to a form J5Jb1J0(e2e0)d for the SDC branch. We
apply two different fittings.~a! We fix e05ec and Jb
54.24 ~from the fitting for the roll branch! and use thex2

method to fit those data within 0.5<e<0.8, which leads to
J054.7960.03 andd50.1860.02. ~b! We fix Jb54.24
and use the nonlinearx2 method for all data within 0.4<e
<0.8, which gives thatJ055.1360.05,d50.1260.01, and
e050.3760.02. We have also tried other alternative fittin
such as using the nonlinearx2 method for all data within
0.4<e<0.8 and fixing e050.27 @from ~i! in ~b!# or e0
50.348 @from ~ii ! in ~c!#, but none of them gives a reaso
able fit. The fitting curves in~a! and~b! and the original data
of J are plotted in Fig. 7. At this stage, the behavior ofJ is
the most unclear one among all the time-averaged glo
quantities defined in Sec. II.

V. DISCUSSION AND CONCLUSION

In the preceding section we concluded that scenario~A! is
valid for SDC. This means thatj2 diverges ate50 andJ
andV vanish ate50. At first sight it seems puzzling that a
properties of SDC are controlled bye, instead ofe2eT . To
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FIG. 7. Plot ofJ vs e for both parallel rolls and SDC. The different fitting forms~a! and ~b! for SDC are discussed in the text. Th
following labels are used: Roll, the numerical data with error bars on the roll branch; SDC, the numerical data with error bars on
branch;~a!, the fitting curve for SDC described in~a! in the text;~b!, the fitting curve for SDC described in~b! in the text;~p!, the fitting
curve for parallel rolls. To indicate that the parallel roll states fore.eT and the SDC states fore,eT may be metastable, the correspondi
fitting curves in~a! and ~p! are plotted with dotted lines. The transition temperature is estimated roughly ateT50.45.
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understand this, we propose an explanation for this scen
which is somewhat similar to that in the hexagon-to-roll tra
sition in non-Boussinesq fluids@20#. In the latter case, the
transition from hexagonal states to parallel roll states occ
at finite eT . Although the roll attractor is unstable for sma
enoughe and metastable against the hexagonal attractor
even slightly largere, the properties of the parallel roll state
are all controlled bye, not by e2eT @20#. Clearly, one can
imagine a similar picture for the roll-to-SDC transitio
While the SDC attractor seems to be either unstable or m
stable against the roll attractor for sufficiently smalle, as an
intrinsic convective state, the properties of SDC are c
trolled at the conduction to convection threshold, not wh
it starts to emerge as the stable state. The existence of
different attractors has been suggested by experim
@11,12#. The basins and the stability of these two attract
are still unclear at present.

The establishment of scenario~A! indicates that the tran
sition between the parallel roll states and the SDC state
first order. This conclusion is also supported by the follo
ing.

~1! Our theory predicts discontinuities in the value and
slope ofJ at eT @see the discussion following Eq.~15!#. This
is a typical signature of a first-order transition.

~2! The presence of hysteretic loops in Figs. 4–7 is
strong indication of a first-order transition. A different hy
teretic loop has also been reported by others for the G
model@13#. Although it is arguable that hysteretic loops m
be found in a second-order transition if the computing time
not long enough to overcome the effects of critical slowi
io,
-

rs

or

a-

-
e
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ts
s
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e
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H

s

down ~which occurs when the correlation timet approaches
infinity!, it is doubtful that the loops in that case can be
distinctive as what we found in Figs. 4–7.

~3! As we described in Sec. IV, the convective patter
depend on the processes leading to them, which is also
served in experiments@12#. This fact suggests that the tw
competing attractors are either both stable or one is st
while the other is metastable for some positivee. Such a
stability property is typical in first-order transitions. On th
contrary, in second-order transitions one of the two attrac
should change from stable to unstable while the ot
changes from unstable to stable ase moves acrosseT .

~4! From Figs. 5–7 it is easy to see that if scenario~B! is
valid, then the fitting curves of all the time-averaged glob
quantities on the SDC branch will cross those on the
branch. But there is no evidence from our numerical cal
lation supporting such a crossing.

As we mentioned in Sec. I, an earlier experiment with
circular cell@11# found thatj2 diverges ate50 with a mean-
field exponent, while the correlation timet either diverges at
e50 with a non-mean-field exponent or diverges at the ro
to-SDC transition temperatureeT with a mean-field expo-
nent. However, a recent experiment with a square cell@12#
concluded thatj2 diverges ateT with a very small exponen
n. We now comment on these experiments and our stud

Regarding our numerical study, we cannot rule out t
the roll-to-SDC transition in the GSH model has a differe
character from those in real experiments, although this se
unlikely. We also cannot rule out that our numerical so
tions are still in the transient regime even though we ha
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waited for about four horizontal diffusion timesth before
collecting data over an interval of severalth for eache. Fur-
thermore, as we discussed in Sec. IV, our numerical data
not accurate enough to determine independently which of
three scenarios is true for SDC. As a result, we have to
on our theoretical predictions to resolve this issue. Fina
we disregarded two data points in our analysis for scen
~A! on the basis that these two points deviate from th
‘‘real’’ values to form hysteretic loops. This introduces
certain arbitrariness in determining which data points de
ate. These shortcomings in our numerical study weaken
validity of our conclusion.

We notice that the data of the correlation lengthj2 for
parallel rolls and SDC were analyzed together in the exp
ment by Morriset al. @11#, which we think is not justified.
Considering that the parallel roll states and the SDC st
are intrinsically different, we believe it is necessary to se
rate their data in the analysis, such as we did in Sec. IV. S
a separation was implicit for the data of the correlation ti
t sincet51` for steady states such as parallel rolls and
principle, only the data for SDC are available. A divergen
at e50 with a non-mean-field exponent was found to
consistent with the data oft for SDC @11#. It is not clear to
us whether a similar conclusion can be reached forj2 if its
data for SDC are analyzed separately.

In a recent interesting experiment, Cakmuret al. @12#
were able to observe the ideal parallel roll state predicted
theory by a tilting of a square convection cell. They we
able to demonstrate that there was a range of the con
parameter in which the SDC and parallel roll states w
bistable. Indeed, the qualitative features are quite simila
those observed in our numerical simulation, except that t
were also able to observe oscillatory parallel roll and S
states. They characterized the transition between the par
roll and SDC states using the spatial correlation length
the spectral entropy and concluded thatj2 diverges ateT
with a small exponentn, consistent with a second-order tra
sition. They also observed, however, that the parallel
state and the SDC state competed with each other via a
propagation, which, together with the bistability, suggest
first-order transition, and concluded that further studies w
necessary to elucidate the true nature of the transition. T
analysis ofj2 is in fact essentially our scenario~B!, which
we have argued is unlikely to be the case. We would a
note that to convincingly show thatj2 for SDC diverges at
eT , one must have a sufficient number of data points wh
j2 are muchlarger than the corresponding typical values
parallel rolls~for e away from both 0 andeT). Otherwise the
m
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data forj2 for SDC may simply approach those for parall
rolls to form a hysteretic loop neareT , instead of diverging
at eT .

As we discussed in Sec. IV, our theory plays an import
role in determining the nature of the roll-to-SDC transitio
So it is very important to check our theoretical predictions
real experiments. One important prediction by our theory
that there exist discontinuities in the value and the slope oJ
at eT . However, we realize that no discontinuity inJ has
been reported by experiments. The reason for this is not c
to us. We conjecture that finite-size effects might play a ro
From Fig. 1 we find that the discontinuity is larger fo
smaller Prandtl numbers. So it would be interesting to se
whether experiments can confirm or rule out such a disc
tinuity in J by using a smalls. Another important prediction
from our analysis is the behavior of the time-averaged v
ticity currentV. Since direct measurements ofV seem to be
very difficult in real experiments@27#, we think it valuable to
calculate V by solving Eq.~2! ~the corresponding version
before rescalings can be found in Ref.@14#! or its improved
versions numerically, with the experimental results ofc(r ,t)
as input. Such a calculation will not only help to clarify th
nature of the roll-to-SDC transition, but also provide an a
ditional experimental test on our theory@14#. It would also
be useful to calculate the time-averaged spectra entrop
suggested in Refs.@12,15#, even though there is no theory t
predict the behavior of this quantity.

In summary, we conclude from our numerical studies a
our theoretical results that the roll-to-SDC transition is fi
order in character. We found that the correlation lengthj2
for SDC diverges ate50, not at the transition temperatur
eT . However, since the uncertainties in our data are unple
antly large and the data points we have are unsatisfacto
few in number, we cannot determine definitely whether
not the exponent ofj2 is mean field. So further investiga
tions are necessary to draw a definite conclusion. In
regard, a theoretical calculation ofj2 for SDC is highly de-
sirable. A theory to describe the roll-to-SDC transition
essential. Finite-size effects should also be studied caref
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