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We investigate the nature of the parallel-roll—to—spiral-defect-ci&Bx) transition in Rayleigh-Beard
convection, based on the generalized Swift-Hohenberg model. We carry out extensive, systematic numerical
studies by, on one branch, increasing the control parameter gradually from the parallel-roll regime to the SDC
regime and, on the other branch, decreasing it in the opposite manner. We find that the data of several
time-averagedylobal quantities all form hysteretic loops from the two branches. We also discuss several
possible scenarios for the transition and analyze our data for SDC accordingly. We conclude that the roll-to-
SDC transition is first order in character and that the correlation length diverges at the conduction to convection
onset. We further postulate that this transition can be understood somewhat similarly to the hexagon-to-roll
transition in non-Boussinesq fluids. Finally, we comment on the differences between our conclusion and those
in two experiments[S1063-651X98)08502-X]

PACS numbe(s): 47.54:+r, 47.20.Lz, 47.20.Bp, 47.27.Te

[. INTRODUCTION spiral-defect-chaogSDC), exhibits very complicated dy-
namics, illustrated by the interplay of numerous rotating spi-
Many nonequilibrium systems exhibit self-organized rals, patches of moving rolls, intricate grain boundaries, dis-
pattern-forming phenomenrda]. In the past few years, a dif- locations, and other defec{$,6]. Its discovery has since
ferent type of intrinsic pattern has emerged in many discistimulated many experimenta[5,6,10—12, theoretical
plines of science. These patterns are characterized by thdit3,14], and numerical7—9,15 efforts to understand it.
extensive, irregular behavior in both space and time, which The nature of the parallel roll to SDC transition is one of
are known as spatiotemporal chg& ' C) [1]. STC typically  the important questions with respect to SDC and has been
exists in large size systems and its complexity increases dréavestigated in several experimental and numerical studies
matically with the system sizg2]. Owing to its generic dy- [11,12,13. By solving the generalized Swift-Hohenberg
namical complexity, STC hence poses a great challenge ttGGSH model of RBC[16—18 for non-Boussinesq fluids
both experimentalists and theoreticians. with randominitial conditions, two of ug15] characterized
From the very beginning, Rayleigh-Bard convection the transition by the behavior of time-averaged global quan-
(RBC) has been a paradigm in the study of pattern formationities such as convective currehtvorticity current() (called
in driven dissipative systems because of its relative simplicvortex energy in Ref[15]), and spectra entrop§ [19]. It
ity and high precision in controlled experimer3]. RBC  was found that the convective current seems to be smooth
can occur when a thin horizontal layer of fluid is heated fromacross the transition temperatusg, but both the vorticity
below. The system is described by three dimensionless paurrent and the spectra entropy seem to obey power-law be-
rameterg[1]: (a) the Rayleigh numbeR=gad3AT/xv, in havior neare;. However, this study was unable to distin-
which g is the gravitational acceleratiod, the layer thick- guish between a gradual or sharp transition. Despite its in-
ness,AT the temperature gradient across the layerthe  conclusiveness on the nature of the roll-to-SDC transition,
thermal expansion coefficient, the thermal diffusivity, and this study suggests that studying such time-averaged global
v the kinematic viscosity(b) the Prandtl numbes=v/x;  quantities is quite useful. It hence motivated us to develop a
and (c) the aspect ratid'=L/2d, whereL is the horizontal phenomenological theory for STC, including SDC, in RBC
size of the system. The Rayleigh numiRris the control [14]. In the theory, we made a random-phase approximation
parameter of the system; the Prandtl numbespecifies the for the spatiotemporally chaotic states and assumed that their
fluid properties. It is convenient to introduce a reduced contime-averaged structure fact&(k) satisfies a scaling form
trol parametee=(R—R,)/R;, whereR, is the critical value  with respect to the two-point correlation leng#h. With
of R at which the fluid bifurcates from a static conductive these assumptions, we obtained analytical expressions for
state to a convective state. both J and Q) in terms of measurable quantities. These the-
RBC has been studied extensively in the literafrg].  oretical results provide us some insights on the nature of
Theoretical analyses by Busse and his coautpdfpredict SDC. In addition, a recent experimental stugy2] also
that parallel roll states are stable inside a stability domain irfound spectra entrop¥ to be a useful quantity.
(R,k,0) space withk the wave number, which is known as  On the experimental side, Morrigt al. [11] studied the
the “Busse balloon.” Surprisingly, recent experimefis6]  structure of SDC using aircular cell. They found that the
and numerical studieg7—9], using systems witlr~0O(1)  correlation lengthé, is smooth across; and diverges ag
and largel’, revealed that the parallel roll state yields to a=0 with a mean-field exponent. However, the data for the
spatiotemporally chaotic state even for states inside theorrelation timer was consistent with either a divergence at
Busse balloon. This spatiotemporally chaotic state, called; with a mean-field exponent or a divergencesat0 with
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a non-mean-field exponent. However, Cakmtal.[12] re-  sions have not only reproduced most patterns observed in
cently used asquarecell in their experiment and found that experiments but also resembled experimental results rela-
&, diverges ate; with a small exponent. In critical phenom- tively well [1,7,8,13,15,21L However, there are some short-
ena, we know that finitdinfinite) &, and = are normally comings in the mode€l9,22]: The stability boundary of the
associated with first-ordegisecond-ordgrtransitions. If this model does not coincide with that of hydrodynamics; it in-
is also true in nonequilibrium phenomena, then these twaluces an unphysical, short-ranged cross roll instability; and
experiments should lead to different conclusions about théoth the shape and the peak position of the power spectrum
nature of the roll-to-SDC transition at. We will comment  for SDC are different from those in the real system. Even so,
further about these two experiments in Sec. V. owing to its simplicity and its qualitative resemblance to real
In this paper we present our extensive, systematic numersystems, this model is very valuable in studying RBC.
cal studies of SDC, based on the GSH model of RBC for In the GSH model, the order parametgfr,t) satisfies
Boussinesq fluids. In comparison with studies in Réb], [16-18
we use random initial conditions at=0.05 ande= 0.8 only.
Then, after completing the calculation at onewe increase S+ gmU- Vi=[e— (V2+1)%]y— ¢, @

€ (originally from €=0.05) or decrease (originally from . . . . .
e€=0.8) gradually and take the final state from the previeus yvhereV is the gradient operator in two dimensions Af(d)

as our initial condition. We hence obtain two different 'S the mean_—flow velocity given by(r)zvg(r,_t) X8 The
branches of data, one from increasia@nd the other from mean-flow fieldZ(r,t), on the other hand, satisfigs8]
decreasing:. We find that the results faf,, J, Q, andZ= all _ 2 2\U2sr—a . 2

form hysteretic loops from the two branches during the roll- Lo o (V= e IVL=e, [VIVI) XV . @
to-SDC transition. We analyze our data in accordance with/ariables in these equations have been rescaled for numeri-
our theoretical resulfsl4]. We conclude that the roll-to-SDC  cal convenience. Their relations to their physical values can
transition is first order in character. We also postulate thape found in Ref.[14]. [See Egs.(1)—(3) and (58)—(60)

this transition can be understood somewhat similarly to theherein] For example, the reduced Rayleigh numbén Eq.
hexagon-to-roll transition in non-Boussinesq fluifB0l; (1) is related to its physical valugg,py; by €oxpi=0.3594%.
namely, we postulate that the SDC bifurcation actually oc-The rescaling factors fog, ¢, t, andr and parameterg,,,
curs ate=0. However, since SDC is unstaliler metastable & andc? can also be found in Ref14].

against parallel roll states at Sma”e,r it emerges Only for We now define several important time-a\/era@dbeﬂ

€>€r. . . . quantities in RBC. The first one is the time-averaged convec-
This paper is organized as follows. In Sec. Il we introducetjve current defined as

the GSH model of RBC and define some important time-

averaged global quantities. We then summarize our theoret- o —— =~ < _

ical results in Ref[14]. In Sec. Il we discuss possible sce- J=A dr ¢ (r,t)=; P (kD g(k,b), 3
narios with regard to SDC, according to whether the

correlation_lengtrfz diverges at=0 or ate;. We al_so nqte_ where (k,t) is the Fourier component af(r,t), A is the

that one might expect to have a power-lavx_/ behawpr, SIME area of the system, arfél(t) represents the time average of
lar to that of&,, and speculate that a scaling relation eX|stsF(t) This quantity increases frod=0 to J>0 at the
between the exponents & and 7. Furthermore, we Specu- ., qyction-to-convection onset and hence characterizes the

late that the structure factd(k,«), defined in Ref[11],  yansition. The second one is the time-averaged vorticity cur-
satisfies a scaling formS(k,w) = &7 (K—Knad &2, 07),  rant defin.ed as g y

which is more general than that of the time-avera§ék).

We present the details of our humerical studies in Sec. IV. -

We also analyze the data fdgs, J, , and = to test these QEA*lf dr wi(r,1), (4)
different scenarios. In Sec. V we discuss the subtleties in-

volved in determining the nature of the roll-to-SDC transi- wherew,(r,t)=— V2{(r,t). This quantity reflects the distor-
tion and comment on the different conclusions between thigion of patterns at large distance. It is identically zero for

work and the earlier experimental studfds,12. perfect parallel rolls and increases dramatically for SDC
[15]. Because of this, it has been speculated that one may
Il. THEORETICAL RESULTS take () as one of the order parameters to characterize the

roll-to-SDC transition[15]. The third one is the time-
The GSH model of RBG16-19 is widely accepted for averaged spectra entropy defined &3]
theoretical study. This model is derived from the three-
dimensional hydrodynamic equations, but is much simpler to —_ =
study both numerically and analytically. The GSH model ::_; S(k,)InS(k,b), ®)
contains two coupled equations in two-dimensional space
=(x,y), one for the order parameteqr,t) and the other for where the structure fact@(k,t) is given by
the mean-flow fieldZ(r,t). The convective patterns in RBC
are completely determined by the order parametér,t). S(k,t)zgl,*(k,t);//(k,t)/\]_ (6)
The amplitude equations for the GSH model and the hydro-
dynamical equations are the same in the leading order nedike its counterpart in thermodynamics, the spectra entropy
onset. Numerical solutions of this model or its modified ver-E is related to the randomness of all excited states. Its value
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is INn2=0.6931 for perfect parallel roll states, but increases s 2 4(x?),
dramatically for SDC. This quantity was also found useful to ro'?. =3¢ =2 | (12
characterize the roll-to-SDC transiti¢t2,15. Another im- &

portant quantity is the two-point correlation length defined as ) , i
where¢, and(x°), have exactly the same meanings as in Eq.

E=[(K2)— (k)22 (7y  (10), but their values may be different.

Notice that the formulas fal3H. andJ3, are the same.
where we have used the notati6R(k))==F(k)S(k) in  This, however, is due to the simplification that the coupling
which S(k) is the time-averaged structure factor. It wasconstant of the nonlinear term® is taken as a constant in
found thatS(k) is azimuthally uniform for SDG5,15. So  EQ. (1). In a more realistic description of hydrodynamics,
one may define an azimuthally averaged structure factothis coupling constant, say(cos), is angle dependent and
S(k), normalized byf;dk kSk)=1, and its corresponding has been evaluated in Rél?].[before the rescali_ngs leading
average(F (k) )= fodk kSK)F(k). to Eq. (1)]. For such a coupling constant, the glme-averaged

In Ref.[14] we presented our analytical calculations, us-convective current for SDC, before the rescalings, has been
ing the GSH model, ofl and Q for STC in RBC. These Calculated in Ref[14] as
calculations are valid for both SDC and phase turbulence

(PT) [23,24). By assuming that the time-averaged two-point 2 [ (X*)x&5
correlation function Jspc™ gsod €~ 2 | (13
2
= 2
Crur2) = 9(ry DYlrz, DI, Y ®  where £=0148 [17] and gspc=1.1319+0.0483

+0.071@r 2 [14]. Correspondingly, the convective current

is translation invariant in STC, i.eC(rq,r,)=C(r;—r5), for parallel rolls is

we found that the phases of twik,t) fields are uncorre-

lated in time unless they have the same wave nunkber 1 (x?) &2
Furthermore, we applied aandom-phase approximation ol =—1 €— x50 , (14)
(RPA) to STC in which four-point correlation functions are Jroll g%

approximated by products of two-point correlation functions

such aspnp~ i Yup. Using this RPA, we derived andQ) ~ Wwith g, =0.6995-0.004% *+0.0083r % [17]. From
in terms ofS(k). We further assumed that the structure fac-these expressions, one finds that
tor satisfies acalingform with respect tcé,, i.e.,
2 1 } 242 [<x2>xl
—
SDC

kS(K) = &, F(K—=Kmax €2), C) AJ=JspcJron= - QSDc[ &
2

Ospc  Groll

where Kk,ax IS the peak position okS(k) and F(x) is the 5
scaling function satisfying” .dx F(x)=1. [Sincek=0 in + &0
kS(k), the lower limit for F(x) is —Kmaxé2, which we ap- Oroll
proximate by—«.] From these assumptions, we obtained
explicit formulas for bothJ and () in the leading order of
& 1 For SDC, these results can be written[24]

(X
&

: (15

roll

Since 2gpc is not equal to I, for most values ofr, the
first term above is not zero. It is highly unlikely that this term
may be canceled by the contributions from the two other

si 2 A(x%) (10 terms. Thus there exist discontinuities in the value and the

sbcT 3| € £ ) slope ofJ during the roll-to-SDC transition. This is not sur-
prising considering thal depends sensitively on the struc-

and ture of the convective pattefi7] and that the structures of
parallel rolls and SDC are so different. Assuming
o 1 [ 242 (ISH )2 [<x2}x/§g]sm=[<x2>x/g§]m” at the transition temperature,
O3pc~ 2{ — 1 7 (1)  we find thatAJ/J,,,, =0.1239 fore=1. So the value and the
207 yact+c & slope ofJ jump about 10% during the roll-to-SDC transition.

Similar jumps can be found for other values®funder the

where we have used the notation(F(X))x  game assumption; see Fig. 1.

=[Z..dx F(X)F(x). Insertingk=kmatXx&,* and Eq.(9)
into Eq. (7), it is easy to see thaix®),=1+(x)2=1 and
(K)k=Kmaxt §£1<X>x .

In comparison, the convective current for perfect parallel From Eqs(10) and(11), it is obvious that the behavior of
rolls with wave numbelk, has been evaluated to b]éo'ﬂ Jspc andQgpc depend sensitively on the two-point correla-
=2[e—(1—k3)?] [17]. To our knowledge, there is no ex- tion length&,. For simplicity, we drop the superscripts in
plicit formula for J3}| for distorted rolls. If one uses this Eqs.(10—(12). We assume that, has a power-law behavior
expression fodSH but replaces (*k2)2 with ((1—k?)?), ~ such as
to account for the finite width of the power spectrum, one _
finds for distorted roll states that Ex~&r0€ ", (16

Ill. POSSIBLE SCENARIOS
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e L 2
o % 242 JacZ+c? Eg,o.

The amplitudes, and{(}, depend on two phenomenological
parameters; o and({x?),. In case(A2), the exponenv has
a non-mean-field value. Now, sincev21, the &, *~ %"

-0.1

-0.2

08 term in Eq.(10) only adds a correction to the leading singu-
04 larity. Instead of Eq(17), one may define
-0.5
06 Jspc=Jo€"[1+]j €M1+ -] (22
7 and
-0.8
[} 05 1 15 2 25 3 35 4
- Qspc= Qo[ 1+ w ettt -], (23
FIG. 1. AJ/Ji vs Prandtl numbers, where AJ=Jspc  with u;=2v—u>0 and\,;>0. Consequently, instead of
=Jroll - Eq. (20), one has that
wheree is the basic scaling field for SDC. Similar behavior Jo=213, j1=—xP)/Ep. (24)

has been found fog, in PT [14]. In that case, since the

transition to PT occurs at=0 [23,24], one has simplye While _Qo is still given by Eq.(21), one must use the corre-
= € [14]. The possible scenario for SDC, however, is moreSPonding new value od,. The values ofw; and\;, how-
subtle since the roll-to-SDC transition occurs at a positivefVer: cannot be determined without knowing the behavior of
temperaturee; [5—7]. One obviously has two alternative ¢2 beyond the leading term described in E46).

choices for the scaling field in Eq. (16): (A) €=e or (B) (B) e=€e—er. As we mentioned, this case resembles the

T=e—er. Case(A) is similar to the situation in the situation in critical phenomena in whicfy diverges ater.

hexagon-to-roll transitioh20] where the two-point correla- :;252’3?: E;ﬂggﬁg\eﬁgc;menﬁéxtﬁﬁ;tggzng;'? (slhgucl)crj also
tion length &, is finite at the transition temperatueg but 9 k- i q

diverges ak=0. This scenario is consistent with the experi- EdS.(22) and(23), we define, neag=0", that
mental result by Morriget al. [11]. Case(B) resembles the

situation in critical phenomena in whid, diverges ater . Jsoc=Jdoe—Jso€”,  Qgpc=Qsgge™. (25)
This scenario was suggested by Cakraual.[12]. We now
discuss these two scenarios separately. The behavior oflgpc is apparently dominated by the smooth

(A) €=e. This implies that all properties of SDC are Packground terdoe nearer. As a consequence, g e
controlled ate=0 rather than ae=e;. As far as scaling factor in Eq.(11) no longer contributes to the value af
relations are concerned, this case is similar to the situation ififom Eqs.(10), (11) and(16), one gets that
PT[14]. Similar to those in PT, one may hence define power
laws such as m=N=2v (26)

Jspc=Joe”,  Qspe~Qoe. (17) instead of Eq(19). As for the amplitudes, one finds that

One finds from Eqs(11) and (16) the scaling relation 3 2 3 _8<X2>x 27
0~ q» 0~ .2
3 Y 3¢2
N=2u+2v. (18) £20
. . and

In comparison, one has=2u+v in PT [14]. From Eq.

(20), sinceJgpc is positive by definition, the values of the 1 [ 042 122

exponents satisfy Qo 0T (28)

= —l s
20 attet ) &,

. L _ where we have used~er near e=0". If 2v is not an
Now it is useful to further distinguish two different cases: integer, then the best way to evaluate the exponerasd v
(A1) v=1/2 and(A2) »>1/2. Case(Al) corresponds t0 @ s in principle, to differentiatdlspc and Qgpc with respect

u=1 v=1/2, A=2+2v=3. (19

mean-field exponent, in which one has that to € and to analyze the corresponding divergences after cer-
, tain orders of differentiation. The scaling relatiops= A
J :E _ A(x)x (20) =2 hence provide a very strong test for the= e— er as-
073 5% 0 sumption. Ifu=2v<1, then the slope afsp¢ is negative in

the range of B<e<'e, With €y =[udso/Jo]¥* #). The
and observation of a negative slope &, nearet will appar-
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ently increase the validity of scenariB). However, if the BT

value of e is very small, such an observation may not be
practical at present.

In critical dynamics, the correlation time as well as the
correlation length exhibit similar power-law behaviors,
which one would expect is also true for SDC. If so, then the
correlation timer, whose definition for SDC is given in Ref.
[11], behaves like

T 7'0?_ z (29

in comparison with Eq(16) for &,. The amplitude equation (2)

for parallel roll states predicts that=2v=1. Although the 2 g@&\\\%j)& )
&J\ﬁﬁ_ :

that the scaling relatiom=2» may still hold for SDC. Ap-
parently, the different possible scenari@d), (A2), and(B)

for &, are equally valid forr. Finally, we remark that one
might also expect a scaling behavior of the structure facto
S(k,w), defined for example in Ref11], such as

kS(k, @) = £,F(K—Kmax §2, 0 7)]. (30

This scaling behavior, if valid, implies E@9) for the time-

values ofz and » may be different for SDC, we speculate
1o

averaged structure fact@(k) and hence is more general. © (@)
We will explore this possibility elsewhere. FIG. 2. Instantaneous patterns @fr,t) and w,(r,t). Dark re-
gions correspond tg/(r,t)>0 or w,(r,t)>0 and white regions to
IV. NUMERICAL SOLUTIONS AND DATA ANALYSES #(r,1) <0 orw,(r,t)<0. (@) ¥(r,t) and(b) w(r,t) ate=0.2 on the

) ) ) roll branch; (c) (r,t) and (d) o(r,t) at e=0.65 on the SDC
We now present our numerical studies of SDC with thepranch.

GSH equations. The numerical method for solving the GSH

equations is based on the work by/Bjtadet al. [25]. Fol-  ation of defects along the sidewall occurs. Two typical
lowing Ref.[7], we choos@,,=50,0=1.0, andc?=2.0 for  shadow graph images, one for the order paramgtert)
parameters in Eqg1) and(2). In our simulation, we take a and another for the vertical vorticity,(r,t)= — V2{(r,t), of
square cell of sizé,=L, =128, which corresponds to an the roll state at=0.2 are shown in Fig. 2B) Within the
aspect ratiol’=64. Uniform square grids with spaciljx =~ SDC branch, SDC states are observedeat0.8—0.55,
=Ay=/4.0 have been used, so the total number of nodewhose behavior has been described in detail befo@15.

is 512<512. We use the rigid boundary conditiondg At e=0.5, only a few spirals still exist that mix with a back-
=n-Vy|g={|g=n-V{|g=0 in the simulation. Heren is  ground of locally curved rolls. Finally, at=0.4, the pattern
the unit vector normal to the boundary, dayof the domain  looks much like a roll state with a few defects and disloca-
of integration. We take two different routes to systematicallytions. In Fig. 2 we plot two typical shadow graph images,
study the transitions between parallel roll states and SDGgain one fory(r,t) and another for,(r,t), of SDC ate
states.(A) We increase the control parameterfrom ¢  =0.65. While the vertical vorticityw,(r) in a roll state is
=0.05 toe=0.6 with steps ofA e=0.05. We call this the roll  almost zero everywhere, the corresponding field has a much
branch.(B) We decrease from €=0.8 to e=0.4. We call richer structure in SDC. This suggests choosingr,t) to be
this the SDC branch. Fo¢=0.05 or 0.8, we choose initial an order parameter in distinguishing a roll state from a SDC
conditions ¢(r,t=0) and (r,t=0) as random variables, state[15]. It is interesting to point out that patterns in the
obeying a Gaussian distribution with a zero mean and a varinterval e=0.4—0.6 depend on their earlier histories, i.e.,
ance of 0.001. For other subsequeit, we take the final whether they are on the roll branch or the SDC branch; see
results from the previous as our initial conditions. For each Fig. 3. So a hysteretic loop exists when one follows the two
e, we wait about four horizontal diffusion timg, before different routes. This is consistent with experimental obser-
collecting data that we hope is sufficient to pass the transientations that different patterns evolve from different initial
regime. We run for an additional 2@,8to collect 20 instan- conditions at the same [12]. Owing to the existence of
taneous profiles for SDC states ortd&o collect 10 profiles hysteresis, the transition temperatégebetween parallel roll

for parallel roll states during each data collection. states and SDC states cannot be determined precisely in our
The patterns we observed are very similar to those foundtudy. Our rough estimate is;=0.45.
in real experiment$5,6], which can be summarized as fol- In order to determine the character of the transition be-

lows. (A) Within the roll branch, straight parallel rolls are tween rolls and SDC, we have calculated, from our numeri-
observed ate=0.05 up to 0.4 with a few defects at the cal studies, the structure fact8(k), the two-point correla-
boundary. Starting a¢=0.45 up to 0.6, the rolls start to bend tion length¢,, the convective current, the vorticity current

and focal singularities start to appear near the boundary. A, and the spectra entrog@ for both roll states and SDC
weak time dependence sets ineat 0.45 in which the nucle- states. The numerical methods used in calculating these
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:-{% +Eo(e—€y)? for the roll states. We find from the nonlinear
x?> method that 2,=4.24+0.04, 5,=2.5+0.1, and &
=1.00+0.08. The background teri@&, is much larger than
the corresponding value for perfect parallel rog,=In2
=0.6931. This presumably is due to finite-size effects and/or
limited computing time. The original data and their corre-
sponding fitting curves for these global quantities are plotted
in Figs. 4-7.
The analyses of the data on the SDC branch must be
@ ﬁ treated with caution given that there are three possible scal-
ing scenarios as discussed in Sec. Ill. We first fit the data of
&, and Q) to power laws such af) &,=¢&, (e—¢€p) " and
FIG. 3. Instantaneous patterns #fr,t) at e=0.55:(a) on the (i) Q=Qq(e— )", Whereey= €., (the onset temperature in
roll branch andb) on the SDC branch. Dark regions correspond toa finite systemin scenario(A) or ;= et (the roll-to-SDC
#(r,t)>0 and white regions tgy(r,t)<0. transition temperatuyen scenario(B). Then we fit the data
of J in accordance with our theoretical result in E0), i.e.,

quantities are the same as in R@f5]. The numerical uncer- (i) J=Jo(e— €.) —J:&, %, where we take the corresponding
tainties are taken as the variances of our data. Considerirfgting results foré, in (i). Clearly the value ot is essential
that we can, at most, take just a few samples of the stronglyo determine which of the three scenarios is valid. In the
fluctuating instantaneous quantities, presumably obeyingpllowing, we apply three different fittings for three values of
Gaussian distributions near their corresponding time<, and check the consistency of our numerical data against
averaged values, we believe that the probabilities, and hengge theoretical results in Eq€L0) and (11).
the uncertainties, _for us to obtain _the truly time-averaged (a) To check whether scenarid\), i.e., e = ¢, is valid, we
Leues, e defrmined by those vaiances. oM e 02 1 ey 0.0, ose vale s givr by e tingdon
scaling form(9) within c;ur numerical uncertainties for SDC he roll branch. Since itis probable that SDC states are un-
stable or metastable &=0.4 and 0.45, the corresponding

[14]. The results fog,, J, Q, and= are plotted in Figs. 4-7. %ata might deviate from their “real” values in order to form

The most striking feature in these figures is the hystereti . . .
loops formed by the two branches. It is also noticeable tha e hysteretic loops. For this reason, we disregard these two

the uncertainties on the SDC branch are generally larger thafints and use only those data within €.6< 0.8 for fitting.
those on the roll branch, which presumably is due to theVe use thex” method to fit our data, which leads @ &,
chaotic character of SDC. =6.8+0.2 andv=0.72¢ 005, (||) QOZ(3Oi OZ)X 1078

We fit the data on the roll branch with power-law behav-andA =3.0+0.1, and(iii) Jo=0.64+0.02 and];=2.9+0.9.
iors. To allow for the possibility that roll states might be The original data of,, J, and() and their corresponding
unstable or metastable far>0.45, only data for 0.05¢ fitting curves are plotted in Fig. 4. Apparently those curves
<0.45 are used in actual fitting§) We first use the nonlin- fit the original data well. So scenari@) is consistent with
ear 2 method to fit the convective current with=Jy(e  OUr numerical data. To further distinguish scendAd) (v
—e)* and find that J,=0.6554-0.0002, x=1.0054 =3z) or (A2) (v>3), we find that, on the one hand,
+0.0004, ande,=0.002. The actual accuracy in our results =0.72=0.05 from the direct fitting in(i) but, on the other
may not be as good as indicated. The fitting errordpis ~ hand, »=0.50=0.05 from A=3.0£0.1 in (i) and
very small. Thise, is the measured onset from conduction toA =2+2v in Eq. (19). This discrepancy is likely caused by
convection, whose positive value is most likely due to finite-the big numerical uncertainties in our data. We feel that the
size effect§26]. ApparentlyJ on the roll branch has a mean- direct fitting is more reliable and scenati?) is more likely
field exponent. The amplitudg, is also in good agreement to be true. However, we cannot definitely rule out_sc_enario
with Eq. (12) provided thatx?),=1 is not too big (i) Using (Al). More accurate data are needed to reEoIve this issue.
the x? method, we fit the data for the correlation length with  (b) We check whether scenari®), i.e., e=e—e7, is
é&r=6,e—€) ", which leads t0¢,,=13.0:0.2 and»  consistent with our numerical data, where the value-ofs
=0.54+0.01. So&, on the roll branch also has a mean-field determined by the fitting of,. In contrast to casés), there
exponentiii) Using they? method, we fit the data for the is no obvious reason to disregard any point in this scenario.
vorticity current with Q=Qq(e—€,)* and find that(, So all the data within 04 €<0.8 are used in our fittings.
=(1.952+0.008)x 10”2 and A =2.461+0.003. Again, the We first use the nonlinegg? method to fit the data of,,
actual accuracy in our results may not be as good as indwhich gives (i) £,=5.9+0.2, v=0.46+0.06, andey=er
cated. This behavior of) is not easy to understand. The =0.27=0.03. Then we fixe,=0.27 and use thg? method
amplitude equations coupled with mean-flow predict, forto fit the data of() and J. We find that (i) Q,=(8.1
rigid-rigid boundaries, tha® ~ "2 for almost perfect paral- +0.2)x10°8 and A=2.33+0.01 and (iii) Jy=0.675
lel rolls andQ ~ € for general patterngl8]. None of these ==0.001 andl;=4.9+0.1. These results are very sensitive to
can explain the behavior ¢ we found, which seems to be the points at=0.4 and 0.45. The original data &%, J, and
consistent with) ~ 2. (iv) The analysis of the spectra en- Q and their corresponding fitting curves are plotted in Fig. 5.
tropy is most difficult since there is no theory whatsoever toThe fitting of () obviously is not good. The resulis=0.46
describe its behavior. We simply fit it to a forE =5, +0.06 in (i) and A\=2.33+0.01 in (ii) do not satisfy the

— >

(a) )
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FIG. 4. Plots ofg;z, J, andQ vs € for both parallel rolls and SDC. The corresponding fitting curves for SDC are descrilf@dnnSec.
IV. The following labels are used: SDC, the numerical data with error bars on the SDC b(anche fitting curves for SDC described in
(@ in the text; Roll, the numerical data with error bars on the roll brafgh;the fitting curves for parallel rolls. To indicate that the parallel

roll states fore> e1 and the SDC states fer< e; may be metastable,

lines. The transition temperature is estimated roughly;at0.45.

scaling relationh =2v in Eq. (26). So scenaridB) with e
=0.27 is unlikely to be true.

(c) We check whether scenari®), with er determined
by the fitting of(2, is consistent with our numerical data. As
in case(b), we use all the data within 0Ze<0.8 in our
fittings. We first use the nonlinear® method to fit the data
of Q and find that(ii) Qu=(4.5+0.3)x10°8 r=1.41
+0.07, ande;=0.348+0.005. Then we fixe;=0.348 and
apply theyx? method to fit the data of, andJ. We find that

the corresponding fitting curvesdoand(p) are plotted with dotted

(i) £€,0=6.550.09 and »=0.295+0.008, and (iii) Jg
=0.667+0.001 and),=4.6=0.1. Again, these fitting results
are very sensitive to the points &t 0.4 and 0.45. The origi-
nal data ofé,, J, and Q) and their corresponding fitting
curves are plotted in Fig. 6. Notice that sineeén (i) is less
than %, the slope ofJ is negative in the range ofOe=¢
—er<ex With €x=[2v;/&5 Jo]** 2. In the present
case, one hag . =3.20x 10" 3, which perhaps is too small
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FIG. 5. Plots ofg;z, J, and( vs € for both parallel rolls and SDC. The corresponding fitting curves for SDC are descriggdimSec.
IV. The following labels are used: SDC, the numerical data with error bars on the SDC b¢anchg fitting curves for SDC described in
(b) in the text; Roll, the numerical data with error bars on the roll braifph;the fitting curves for parallel rolls.

to be checked by real experiments or simulations. From the It is worthwhile to mention that, in all cases above, the
pure-data-fitting point of view, the fittings in this case are asvalue ofJ, agrees with the theoretical result 2/3 in Ef0);
good as the fittings in cada). So, without the benefit of our the value ofl, is also consistent with the theoretical predic-
theoretical results, scenariB) with e;=0.348 could bdin- tion J,=8/3. On the other hand, the theoretical results in
correctly accepted. However, the exponenis=0.295 Egs.(21) and(28) predict thatQ,=7.4x10"* in case(a),
+0.008 in(i) andA =1.41+0.07 in(ii) are not even close to Q,=7.2x10 ° in case(b), andQ,=9.7x10"° in case(c).
satisfying the scaling relation =2v in Eq. (26). So this  All these predictions are several orders larger than the cor-
scenario can be ruled out by our theory. From this, togetheresponding numerical results. The reason for such big dis-
with the discussions in caséa) and (b), we conclude that crepancies is not clear to us.

scenariaB) is unlikely to be valid for SDC and scenarid) We have also studied the behavior of the spectra entropy.
is consistent with our numerical data and our theory. Owing to the lack of any theory, we simply fit the data=f
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FIG. 6. Plots ofg;z, J, andQ vs € for both parallel rolls and SDC. The corresponding fitting curves for SDC are descrilf@dnnSec.
IV. The following labels are used: SDC, the numerical data with error bars on the SDC b(anche fitting curves for SDC described in
(c) in the text; Roll, the numerical data with error bars on the roll brargh;the fitting curves for parallel rolls.

to a form E=E,+E(e—€y)° for the SDC branch. We able fit. The fitting curves itta) and(b) and the original data
apply two different fittings.(a) We fix eg=€. and B,  of E are plotted in Fig. 7. At this stage, the behavioffs
=4.24 (from the fitting for the roll branchand use the?  the most unclear one among all the time-averaged global
method to fit those data within 05¢=<0.8, which leads to quantities defined in Sec. Il.

Eo=4.79+-0.03 and5=20.18i0.02. (b) We fix E,=4.24

and use the nonlinegy® method for all data within 04 e

<0.8, which gives thaE ;=5.13+0.05,6=0.12+0.01, and V. DISCUSSION AND CONCLUSION
€0=0.37+=0.02. We have also tried other alternative fittings In the preceding section we concluded that scen@jds
such as using the nonlinea® method for all data within valid for SDC. This means that, diverges ate=0 andJ
0.4<€<0.8 and fixing €;=0.27 [from (i) in (b)] or ¢,  and() vanish ate=0. At first sight it seems puzzling that all
=0.348([from (ii) in (c)], but none of them gives a reason- properties of SDC are controlled ley instead ofe— €. To
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FIG. 7. Plot ofZ vs € for both parallel rolls and SDC. The different fitting fornt® and (b) for SDC are discussed in the text. The
following labels are used: Roll, the numerical data with error bars on the roll branch; SDC, the numerical data with error bars on the SDC
branch;(a), the fitting curve for SDC described @) in the text;(b), the fitting curve for SDC described iib) in the text;(p), the fitting
curve for parallel rolls. To indicate that the parallel roll stateseforer and the SDC states fer< e may be metastable, the corresponding
fitting curves in(a) and (p) are plotted with dotted lines. The transition temperature is estimated rougkjy=4t.45.

understand this, we propose an explanation for this scenaridown (which occurs when the correlation timeapproaches
which is somewhat similar to that in the hexagon-to-roll tran-infinity), it is doubtful that the loops in that case can be as
sition in non-Boussinesq fluid0]. In the latter case, the distinctive as what we found in Figs. 4-7.

transition from hexagonal states to parallel roll states occurs (3) As we described in Sec. IV, the convective patterns
at finite e7. Although the roll attractor is unstable for small depend on the processes leading to them, which is also ob-
enoughe and metastable against the hexagonal attractor fogserved in experimentl2]. This fact suggests that the two
even slightly largek, the properties of the parallel roll states competing attractors are either both stable or one is stable
are all controlled bye, not by e— €7 [20]. Clearly, one can while the other is metastable for some positiweSuch a
imagine a similar picture for the roll-to-SDC transition. stability property is typical in first-order transitions. On the
While the SDC attractor seems to be either unstable or metaontrary, in second-order transitions one of the two attractors
stable against the roll attractor for sufficiently smgllas an  should change from stable to unstable while the other
intrinsic convective state, the properties of SDC are conchanges from unstable to stableamoves acrosgr.

trolled at the conduction to convection threshold, not where (4) From Figs. 5—7 it is easy to see that if scendBy is

it starts to emerge as the stable state. The existence of twalid, then the fitting curves of all the time-averaged global
different attractors has been suggested by experimenguantities on the SDC branch will cross those on the roll
[11,12. The basins and the stability of these two attractordoranch. But there is no evidence from our numerical calcu-
are still unclear at present. lation supporting such a crossing.

The establishment of scenarid) indicates that the tran- As we mentioned in Sec. |, an earlier experiment with a
sition between the parallel roll states and the SDC states isircular cell[11] found thaté, diverges ak= 0 with a mean-
first order. This conclusion is also supported by the follow-field exponent, while the correlation timeeither diverges at
ing. €=0 with a non-mean-field exponent or diverges at the roll-

(2) Our theory predicts discontinuities in the value and theto-SDC transition temperature; with a mean-field expo-
slope ofJ at €7 [see the discussion following E@L5)]. This  nent. However, a recent experiment with a square [d&]]
is a typical signature of a first-order transition. concluded that, diverges ater with a very small exponent

(2) The presence of hysteretic loops in Figs. 4—7 is av. We now comment on these experiments and our study.
strong indication of a first-order transition. A different hys-  Regarding our numerical study, we cannot rule out that
teretic loop has also been reported by others for the GShhe roll-to-SDC transition in the GSH model has a different
model[13]. Although it is arguable that hysteretic loops may character from those in real experiments, although this seems
be found in a second-order transition if the computing time isunlikely. We also cannot rule out that our numerical solu-
not long enough to overcome the effects of critical slowingtions are still in the transient regime even though we have
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waited for about four horizontal diffusion timeg before  data foré, for SDC may simply approach those for parallel
collecting data over an interval of sevetglfor eache. Fur-  rolls to form a hysteretic loop nea#, instead of diverging
thermore, as we discussed in Sec. 1V, our numerical data ais ey .
not accurate enough to determine independently which of the As we discussed in Sec. IV, our theory plays an important
three scenarios is true for SDC. As a result, we have to relyole in determining the nature of the roll-to-SDC transition.
on our theoretical predictions to resolve this issue. FinallySo it is very important to check our theoretical predictions by
we disregarded two data points in our analysis for scenarioeal experiments. One important prediction by our theory is
(A) on the basis that these two points deviate from theithat there exist discontinuities in the value and the slopg of
“real” values to form hysteretic loops. This introduces a at er. However, we realize that no discontinuity dhhas
certain arbitrariness in determining which data points devibeen reported by experiments. The reason for this is not clear
ate. These shortcomings in our numerical study weaken th® us. We conjecture that finite-size effects might play a role.
validity of our conclusion. From Fig. 1 we find that the discontinuity is larger for
We notice that the data of the correlation lendthfor smaller Prandtl numbes. So it would be interesting to see
parallel rolls and SDC were analyzed together in the experiwhether experiments can confirm or rule out such a discon-
ment by Morriset al. [11], which we think is not justified. tinuity in J by using a smalb-. Another important prediction
Considering that the parallel roll states and the SDC statesom our analysis is the behavior of the time-averaged vor-
are intrinsically different, we believe it is necessary to sepaticity current(). Since direct measurements@fseem to be
rate their data in the analysis, such as we did in Sec. IV. Suchery difficult in real experimentf27], we think it valuable to
a separation was implicit for the data of the correlation timecalculate Q) by solving Eg.(2) (the corresponding version
7 sincer= + « for steady states such as parallel rolls and, inbefore rescalings can be found in Rgf4]) or its improved
principle, only the data for SDC are available. A divergenceversions numerically, with the experimental resultsif,t)
at e=0 with a non-mean-field exponent was found to beas input. Such a calculation will not only help to clarify the
consistent with the data af for SDC[11]. It is not clear to  nature of the roll-to-SDC transition, but also provide an ad-
us whether a similar conclusion can be reachedgfoif its ditional experimental test on our theof¥4]. It would also
data for SDC are analyzed separately. be useful to calculate the time-averaged spectra entropy as
In a recent interesting experiment, Cakmetral. [12]  suggested in Ref$12,15, even though there is no theory to
were able to observe the ideal parallel roll state predicted bpredict the behavior of this quantity.
theory by a tilting of a square convection cell. They were In summary, we conclude from our numerical studies and
able to demonstrate that there was a range of the contraur theoretical results that the roll-to-SDC transition is first
parameter in which the SDC and parallel roll states wererder in character. We found that the correlation length
bistable. Indeed, the qualitative features are quite similar téfor SDC diverges at=0, not at the transition temperature
those observed in our numerical simulation, except that they; . However, since the uncertainties in our data are unpleas-
were also able to observe oscillatory parallel roll and SDCantly large and the data points we have are unsatisfactorily
states. They characterized the transition between the parallfdw in number, we cannot determine definitely whether or
roll and SDC states using the spatial correlation length angot the exponent of, is mean field. So further investiga-
the spectral entropy and concluded tiatdiverges ater  tions are necessary to draw a definite conclusion. In this
with a small exponenk, consistent with a second-order tran- regard, a theoretical calculation & for SDC is highly de-
sition. They also observed, however, that the parallel rolsirable. A theory to describe the roll-to-SDC transition is
state and the SDC state competed with each other via a frorsential. Finite-size effects should also be studied carefully.
propagation, which, together with the bistability, suggests a
first-order transition, and concluded that further studies were
necessary to elucidate the true nature of the transition. Their
analysis of¢, is in fact essentially our scenari®), which X.J.L. and J.D.G. were supported by the National Science
we have argued is unlikely to be the case. We would alsd-oundation under Grant No. DMR-9596202. H.W.X. was
note that to convincingly show that, for SDC diverges at supported by the Research Corporation under Grant No.
er, one must have a sufficient number of data points whos€C4250. Numerical work reported here was carried out on
&, are muchlarger than the corresponding typical values of the Cray-C90 at the Pittsburgh Supercomputing Center and
parallel rolls(for e away from both 0 andy). Otherwise the Cray-YMP8 at the Ohio Supercomputer Center.
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